COMBINING HIGH-LEVEL FEATURES OF RAW AUDIO WAVES AND MEL-SPECTROGRAMS FOR AUDIO TAGGING

Marcel Lederle and Benjamin Wilhelm

University of Konstanz

• One-dimensional CNN trained on raw-audio

Data Augmentation

• Time shifting (1) Random shift in time dimension

- Random cropping (2) Crop input to match input size of
- Random padding (3)

Pad input with zeros to match input

data

- Two-dimensional CNN trained on mel-spectrograms
- Combining both CNNs by densely connected layers within a single network
- Data augmentation

- Figure 1:Illustration of the task by [1].
- size of CNNs
- Replication (4) Replicate input several times
- Mixup (5) Blend multiple audio clips of same or different classes [4]

Figure 3: Visualization of augmentation techniques for mel-spectrograms.

Evaluation

Model	Input length	Public score	Private score	Total score
cnn- $audio$	1 sec	0.920	0.888	0.894
	$2 \sec$	0.921	0.884	0.891
	3 sec	0.935	0.889	0.898
cnn-spec	1 sec	0.930	0.923	0.924
	$2 \mathrm{sec}$	0.950	0.928	0.932
	3 sec	0.935	0.930	0.931
cnn- $comb$	1 sec	0.955	0.939	0.942
	$2 \sec$	0.966	0.944	0.948
	3 sec	0.956	0.944	0.946

Table 1:Evaluation results (MAP@3) of the individual models on the public (301 samples), private (1299 samples), and full test set of the DCASE 2018 Challenge on Kaggle.

Method and Network Architecture

cnn-spec and *cnn-audio*:

- Architecture is similar to common image classification CNNs (VGG19 [2], AlexNet [3])
- Batch Normalization after each block and dense layer
- ReLU after each convolutional and dense layer
- cnn-audio and cnn-spec are trained separately on raw-audio waves and log-scaled mel-spectrograms, respectively

cnn-comb:

- cnn-audio and cnn-spec are joined by removing the softmax and dense layers, concatenating the output features, and adding a densely connected neural network
- The transferred weights are kept fixed while training the new layers

Figure 4: Comparison of per-category scores of single-input models, combined models with one input alternately set to zero, and the combined model with both inputs. The mAP@3 score is reported on a single fold for each model.

•
$$cnn-audio \stackrel{\text{MAP@3}}{>} cnn-spec : cnn-comb_{\text{spec_input=0}} \stackrel{\text{MAP@3}}{>} cnn-comb_{\text{audio_input=0}}$$

• $cnn-spec \stackrel{\text{MAP@3}}{>} cnn-audio : cnn-comb_{\text{audio_input=0}} \stackrel{\text{MAP@3}}{>} cnn-comb_{\text{spec_input=0}}$
• $cnn-comb$ with both inputs performs best

- *cnn-comb* uses high-level features of both models \Longrightarrow
- $\implies cnn-comb$ focuses on the features of the superior model

Figure 2:Illustrated architecture of the models.

Conclusion

Extending current Convolutional Neural Network approaches that only make use of a frequency representation by adding a second input that incorporates the raw audio wave, has improved the mAP@3 score significantly. We have demonstrated the capabilities of our model by competing in the Freesound General-Purpose Audio Tagging Challenge on Kaggle and ranking in the top two percent of all participants.

References

[1] E. Fonseca, M. Plakal, F. Font, D. P. Ellis, X. Favory, J. Pons, and X. Serra, "General-purpose tagging of freesound audio with audioset labels: Task description, dataset, and baseline," arXiv preprint arXiv:1807.09902, 2018.

[2] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," in Advances in neural information processing systems, 2012, pp. 1097–1105.

[4] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, "mixup: Beyond empirical risk minimization," in International Conference on Learning Representations, 2018.